skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chidester, Bethany_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Heat flux from the core to the mantle provides driving energy for mantle convection thus powering plate tectonics, and contributes a significant fraction of the geothermal heat budget. Indirect estimates of core‐mantle boundary heat flow are typically based on petrological evidence of mantle temperature, interpretations of temperatures indicated by seismic travel times, experimental measurements of mineral melting points, physical mantle convection models, or physical core convection models. However, previous estimates have not consistently integrated these lines of evidence. In this work, an interdisciplinary analysis is applied to co‐constrain core‐mantle boundary heat flow and test the thermal boundary layer (TBL) theory. The concurrence of TBL models, energy balance to support geomagnetism, seismology, and review of petrologic evidence for historic mantle temperatures supportsQCMB∼15 TW, with all except geomagnetism supporting as high as ∼20 TW. These values provide a tighter constraint on core heat flux relative to previous work. Our work describes the seismic properties consistent with a TBL, and supports a long‐lived basal mantle molten layer through much of Earth's history. 
    more » « less